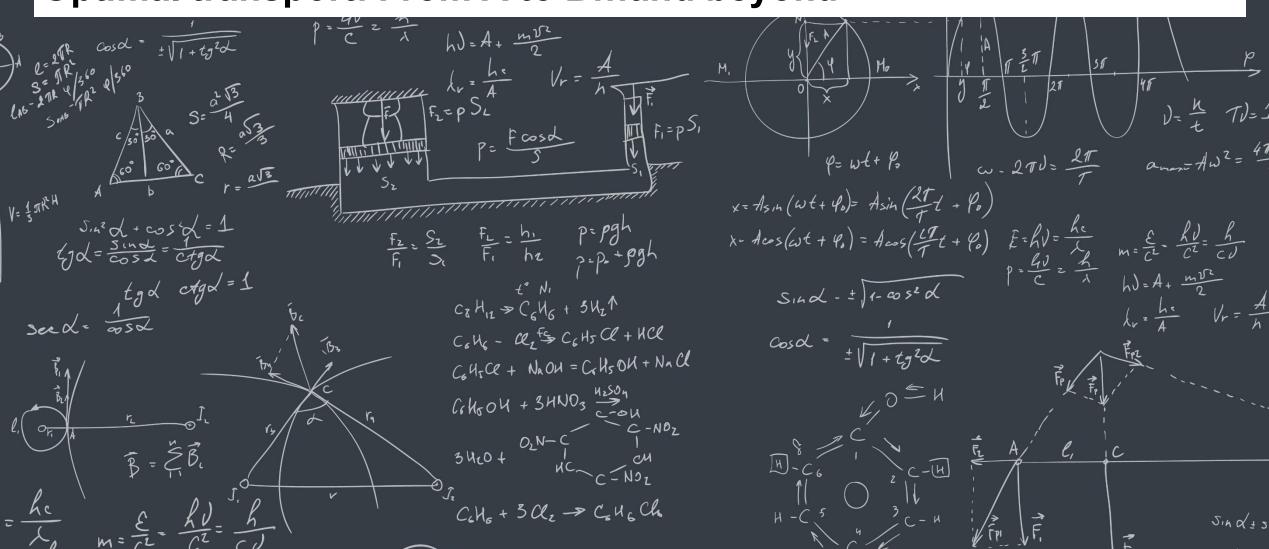
Assyr Abdulle Lecture, Prof. Dr. Alessio Figalli

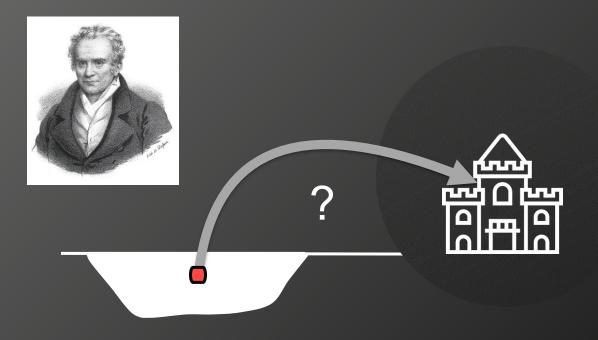
Optimal transport: From A to B...and beyond

00) d co) B = 1 (co) (d-B) + 405 (d+13)!)



History of optimal transport (OT)

Monge's problem

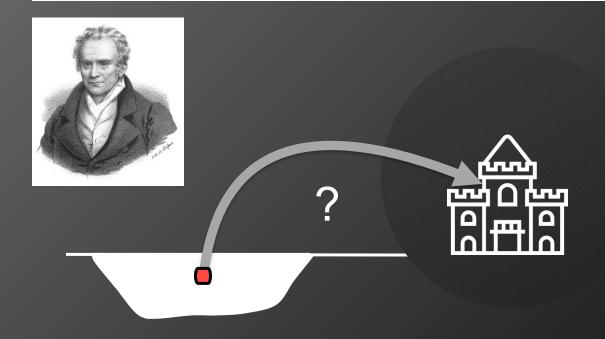


You have a certain amount of soil to extract from the ground, and transport to different places, to build a fortification.

TIH zürich

History of optimal transport (OT)

Monge's problem



You have a certain amount of soil to extract from the ground, and transport to different places, to build a fortification.

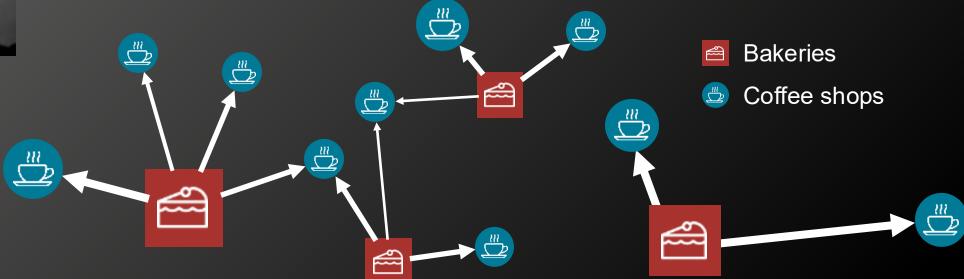
Consider each element of soil: to which destination should it be sent to guarantee the construction can be achieved while minimizing the total *transportation* cost?

Monge's cost = total traveled distance

History of optimal transport (OT)

Leonid Kantorovich

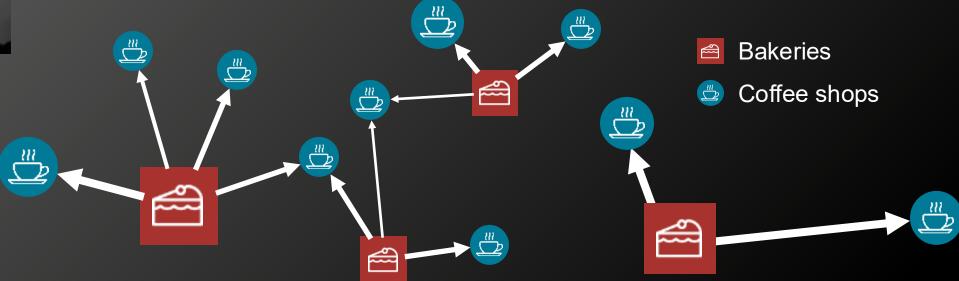
In the 1940s, Leonid Kantorovich studied Monge's problem and found a new formulation that allows for "non-deterministic" transports.



History of optimal transport (OT)

Leonid Kantorovich

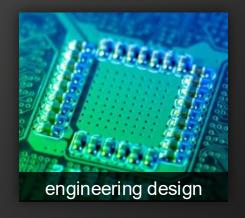
In the 1940s, Leonid Kantorovich studied Monge's problem and found a new formulation that allows for "non-deterministic" transports.

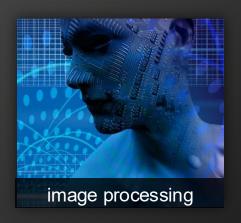


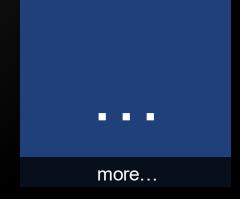
For his work, Kantorovich received the Nobel prize in economics in 1975 (joint with Koopmans).

Ubiquity of OT

OT has applications to a variety of fields

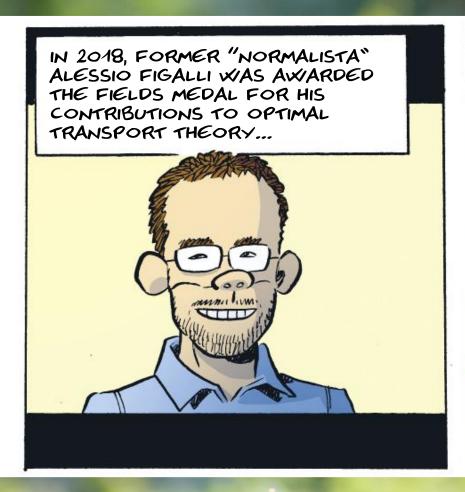






A Fields Medal solution to the optimal transport problem

What's the best way to move from one place to another?

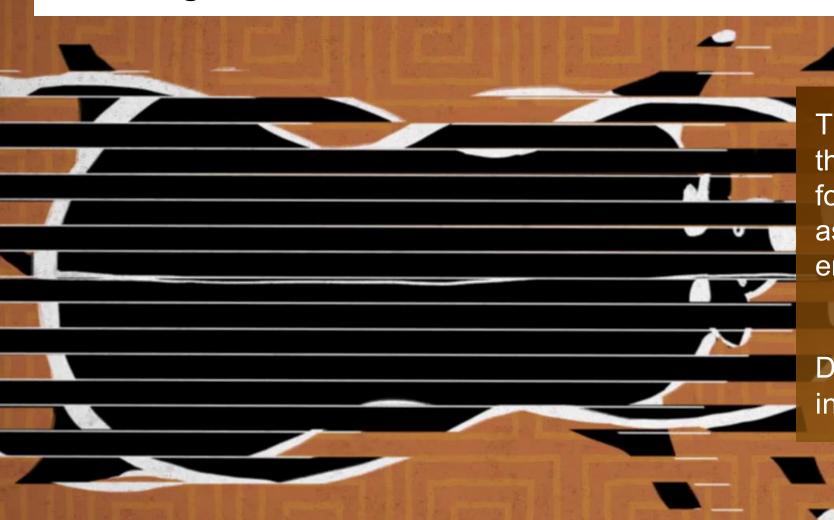


Problem I Dido's legend

Around the 8th century BC., after Dido's brother (king of Tyre) murdered her husband, Dido fled the city of Tyre and escaped with a few of her servants.

She sailed across the Mediterranean and landed in the realm of King larbas, from whom she sought to buy a piece of land where she and her servants could live.

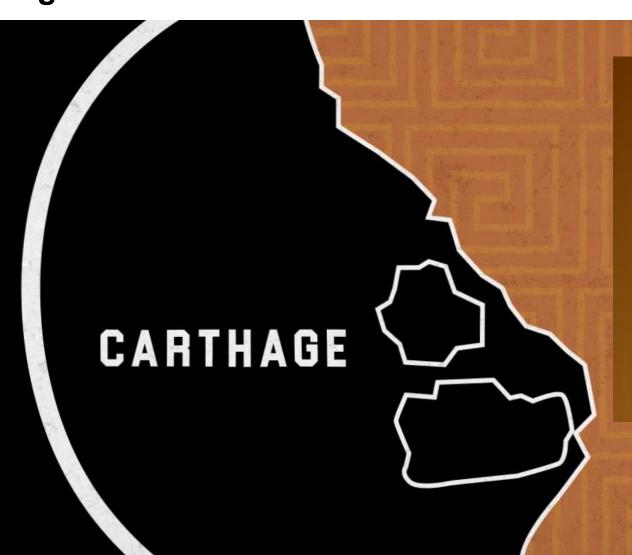
Problem I **Dido's legend**



The king offered her what he thought was a raw deal where, for her money, she could have as much land as she could enclose with a single oxhide.

Dido cut the oxhide into incredibly thin strips.

Problem I Dido's legend



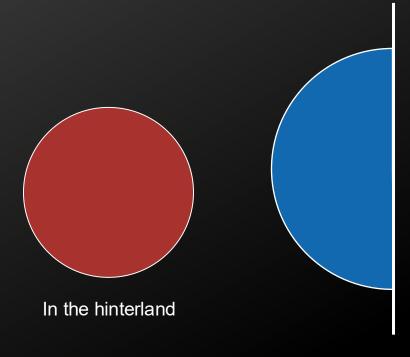
By sewing the strips together, she was able to enclose the largest possible area by laying the tied-together strips in a semicircle up against the coast.

This became the heart of Carthage.

Dido's legend is commemorated in mathematics

Isoperimetric problem:

Given a curve of a certain length, enclose the maximum amount of area



On the coast

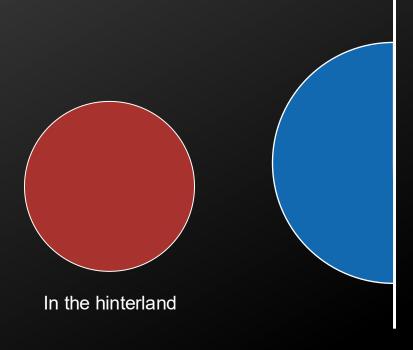
Dido's legend is commemorated in mathematics

Isoperimetric problem:

Given a curve of a certain length, enclose the maximum amount of area

or equivalently

Minimize length among curves enclosing a fixed area



On the coast

What happens in three dimensions?

Isoperimetric problem:

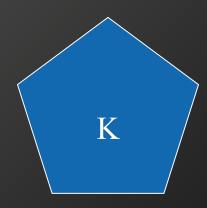
Given a certain volume, what is the least surface area need to enclose it?

The answer is given to us by soap bubbles: the sphere.

Given a certain amount of air, the bubble adjusts its shape to minimize its energy tension.

Droplets and crystals

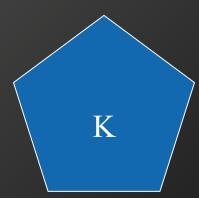
Gibbs 1878: crystals/droplets arrange themselves by assuming the shape with the lowest surface energy.



Droplets and crystals

Gibbs 1878: crystals/droplets arrange themselves by assuming the shape with the lowest surface energy.

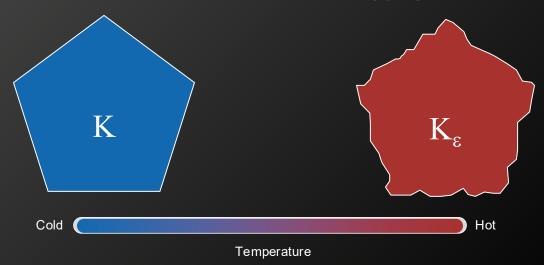
Assume we give energy to these crystals by raising the temperature. How much will the shape change, based on the amount of energy given to the crystal?



Droplets and crystals

Gibbs 1878: crystals/droplets arrange themselves by assuming the shape with the lowest surface energy.

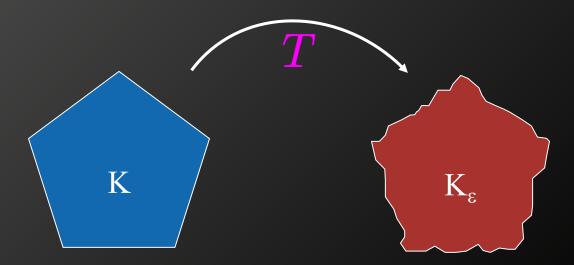
Assume we give energy to these crystals by raising the temperature. How much will the shape change, based on the amount of energy given to the crystal?



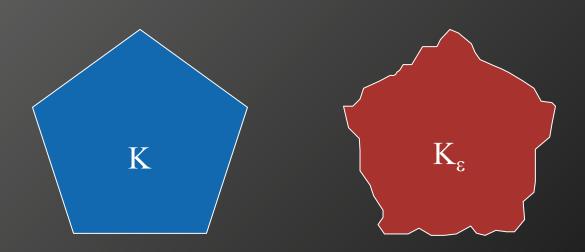
 ε = amount of energy added to the system

Droplets and crystals

We can think of OT as a way to follow how the individual particles move along the process of heating the crystal, so to understand the change in shape.



Droplets and crystals

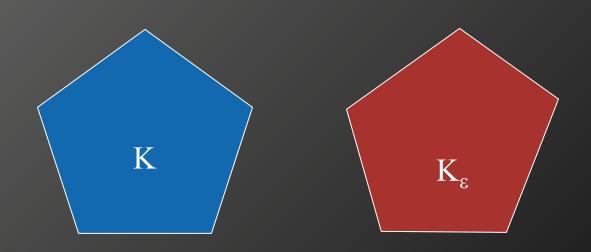


Theorem (Figalli, Maggi, Pratelli - 2010)

The shape of the crystal can change at most by $\sqrt{\varepsilon}$.

 ε = amount of energy added to the system

Droplets and crystals

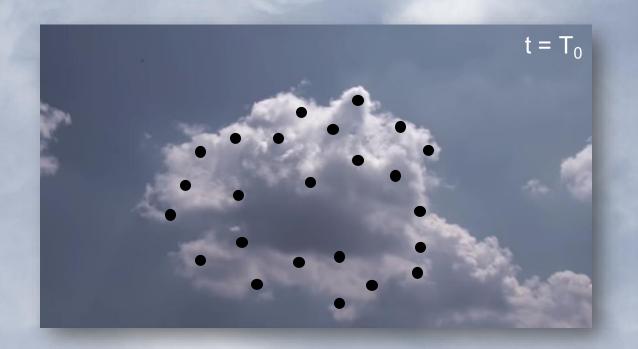


Theorem (Figalli, Zhang - 2020)

The crystal cannot change its structure.

 ε = amount of energy added to the system

Meteorology – Semigeostrophic equations





Who went where?

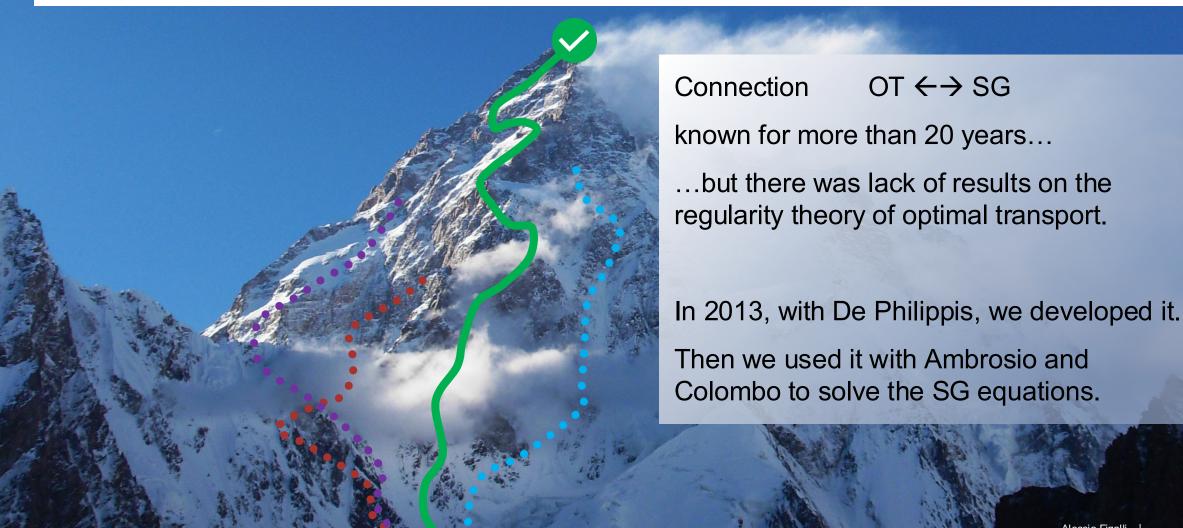
Meteorology – Semigeostrophic equations

Who went where?

Answer: Particles move in an optimal way (Cullen, 1990's)

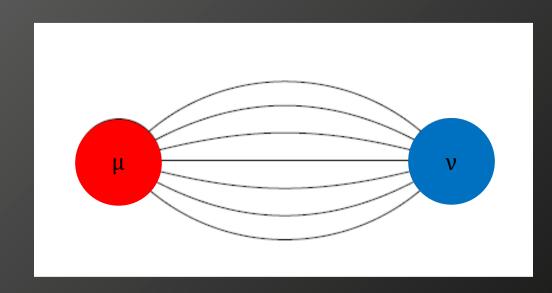
Meteorology – Semigeostrophic equations

Meteorology – Semigeostrophic equations



Optimal transport and Wasserstein distance

A way to measure distance between distributions



Optimal transport can be used to define a "distance" between probability distributions:

$$W_c(\mu, \nu) := \inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[c(X, Y)]$$

Optimal transport

What for? Image transfer (Rabin-Delon-Gousseau 2010)

(a) Source image (Auguste Renoir, Le (b) Style image (Paul Gauguin, Madéjeuner des Canotiers, 1881).

hana no atua - le jour de Dieu, 1894).

(c) Color transfer.

(d) Iterated TRM filter.

(e) Source image.

(f) Style image.

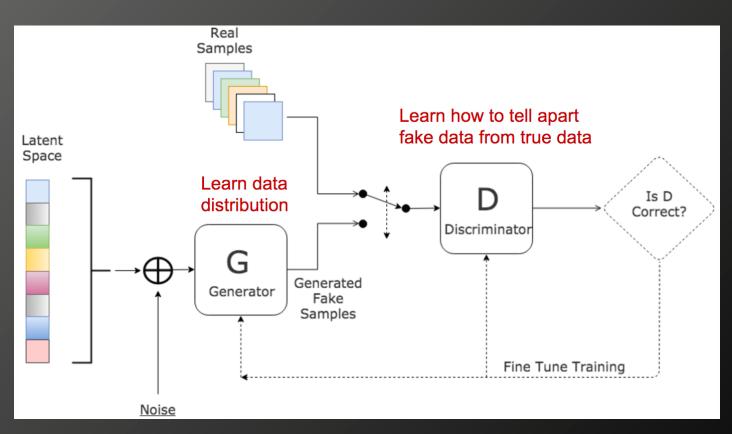
(g) Color transfer.

(h) Iterated TRM filter.

Optimal transport can be used to efficiently "transport" colors from one image to another.

OT: what else?

1) Generative Adversarial Networks (GANs)



GAN (Goodfellow et al. 2014):

- a discriminator D estimates the probability of a given sample coming from the real dataset
- a generator G captures real data to generate samples as real as possible

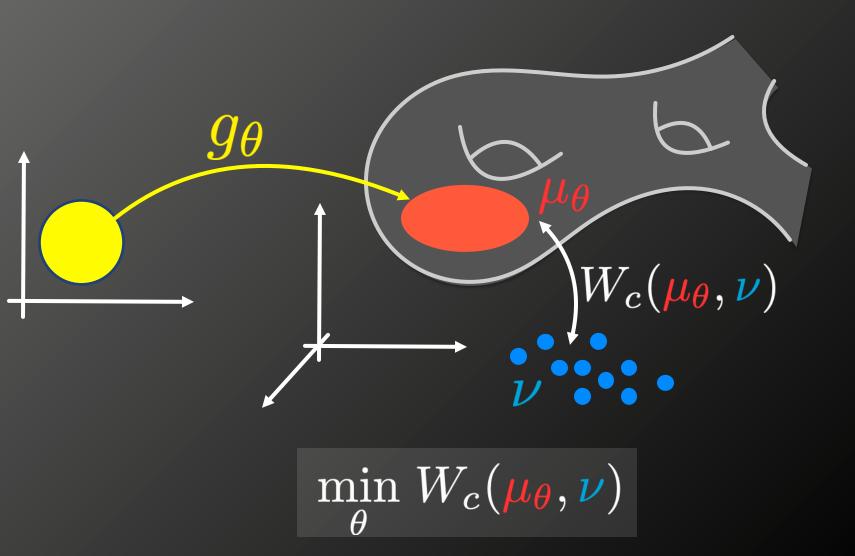
Goal: optimize G and D

Alessio Figalli

26

OT: what else?

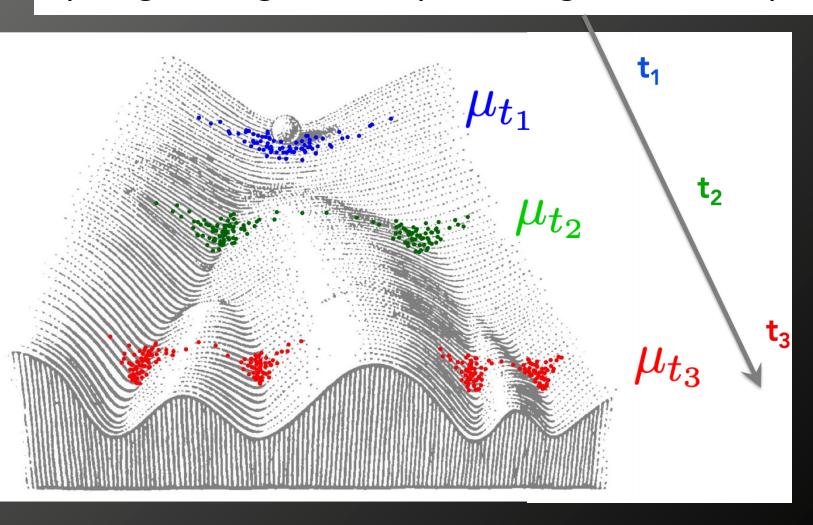
1) Wasserstein GAN (Arjovsky et al. 2017, Lei et al. 2019)



W-GAN: apply OT distances to decide whether an image is real or fake.

OT: what else?

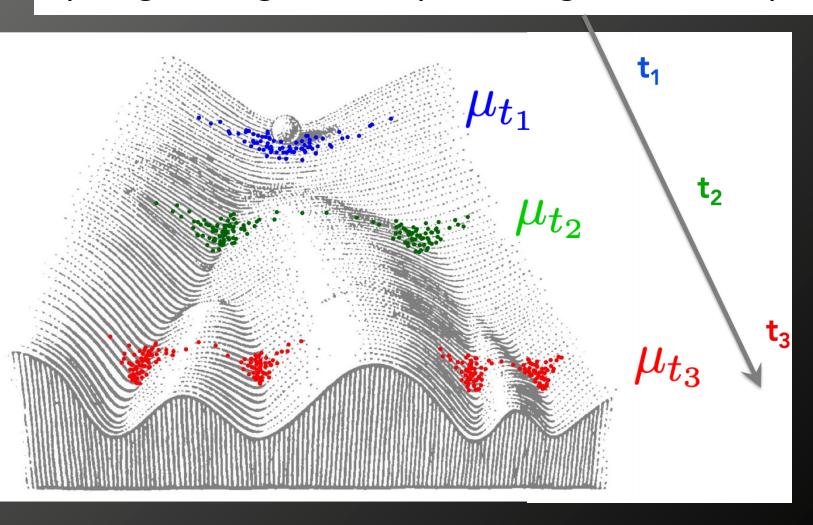
2) Single-cell genomics (Schiebinger et al. 2019)



Goal: understand the molecular programs that guide differentiation of cells during development

OT: what else?

2) Single-cell genomics (Schiebinger et al. 2019)



Goal: understand the molecular programs that guide differentiation of cells during development

Waddington-OT: combine
Waddington landscape model with
OT to identify the trajectories of the
cells from samples collected
independently at various times.

Recent questions: numerical complexity

A fundamental question: how to solve OT computationally? If one considers discrete measures with N points, standard algorithms require N^3 .

Recent questions: numerical complexity

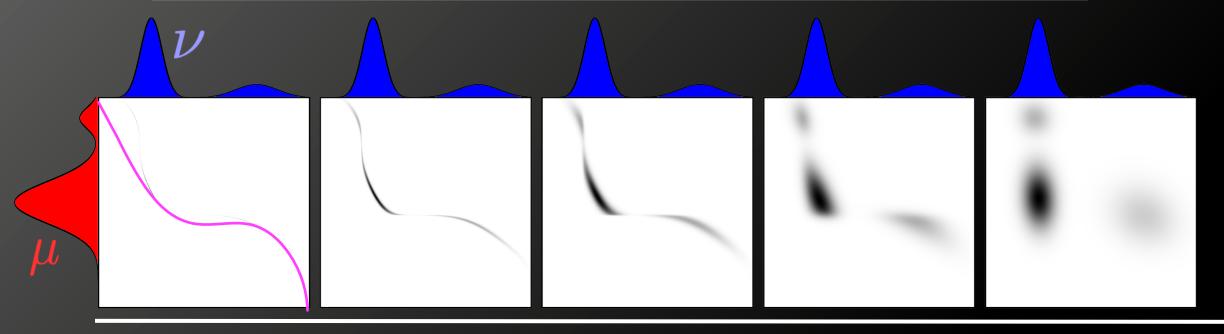
A fundamental question: how to solve OT computationally? If one considers discrete measures with N points, standard algorithms require N^3 .

Entropic regularization: improves computational cost (cf. Cuturi-Peyré 2018).

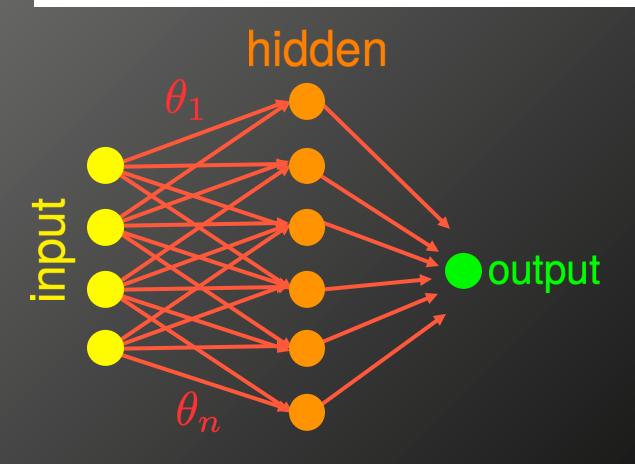
Recent questions: numerical complexity

A fundamental question: how to solve OT computationally? If one considers discrete measures with N points, standard algorithms require N^3 .

Entropic regularization: improves computational cost (cf. Cuturi-Peyré 2018).



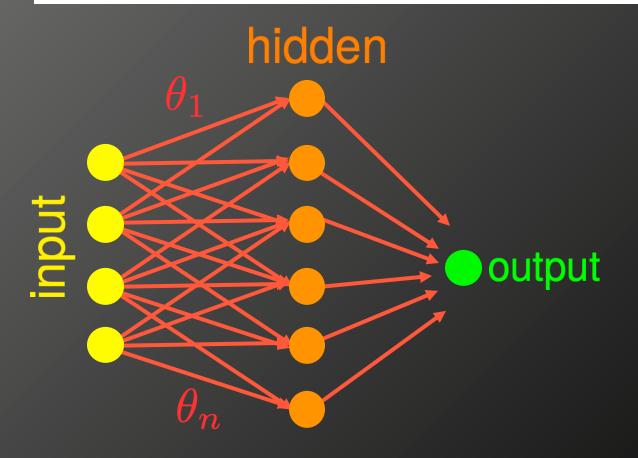
Recent questions: neural networks and gradient flows



Training of a *single* layer neural network can be reinterpreted as an «OT gradient flow» for the weights.

$$\mu := \frac{1}{n} \sum_{i} \delta_{\theta_i}$$

Recent questions: neural networks and gradient flows



$$\mu := \frac{1}{n} \sum_{i} \delta_{\theta_i}$$

Training of a *single* layer neural network can be reinterpreted as an «OT gradient flow» for the weights.

Gives rise to equations of the form:

$$\partial_t \mu_t = \operatorname{div}(\nabla \partial \operatorname{Loss}(\mu_t))$$

For multi layers NN, no such interpretation is available.

Recent questions: OT and loss functions

Natural problem in machine learning:

- *v* models data distribution;
- learned probability distribution (from which one samples) $\mu_{ heta} := (g_{ heta})_{\sharp} \mu$

Training is an optimization problem:

$$\min_{\theta} W_c(\mu_{\theta}, \nu)$$

Non-convex problem: makes it highly challenging.

Recent questions: OT and loss functions

Natural problem in machine learning:

- *v* models data distribution;
- learned probability distribution (from which one samples) $\mu_{ heta} := (g_{ heta})_{\sharp} \mu$

Training is an optimization problem:
$$\min_{ heta} W_c(\mu_{ heta},
u)$$

Non-convex problem: makes it highly challenging.

In practice: OT seems to « convexify » some problems.

Understanding why, could lead to important breakthroughs.

Connections to Wasserstein GANs, Wasserstein linear regression, global optimization networks, inverse problems, etc.

Assyr Abdulle Lecture, Prof. Dr. Alessio Figalli

Thank you for your attention.

